Topic 7-Second order linear homogeneous constant wefficient ODES

In this topic we will learn how
to find two linearly independent
solutions to
$$a_2 y'' + a_1 y' + a_0 y = 0$$

where a_2, a_1, a_0 are constants and $a_2 \neq 0$

Def: The characteristic equation of

$$a_2 y'' + a_1 y' + a_0 y = 0$$

is
 $a_2 r^2 + a_1 r + a_0 = 0$
There are three cases that can occur for
the roots of the characteristic equation
Ex of case 1: distinct real roots
The characteristic equation of
 $2y'' - 5y' - 3y = 0$
is
 $2r^2 - 5r - 3 = 0$
Which becomes
 $(2r + 1)(r - 3) = 0$
which has two distinct real roots
 $r = -\frac{1}{2}, 3$

Ex of two repeated real roots:
The characteristic equation of

$$y''-4y'+4y=0$$

is
 $r^2-4r+4=0$
Which becomes
 $(r-2)(r-2)=0$
Which has one repeated real root $r=2$
Ex of two complex conjugate roots:
The characteristic polynomial of
 $y''-4y+13y=0$
is
 $r^2-4m+13=0$
Which has roots
 $r=\frac{-(-4)\pm\sqrt{16-4(1)(13)}}{2(1)}=\frac{4\pm\sqrt{-36}}{2}=\frac{4\pm6\sqrt{13}}{2}=2\pm31$
Thus, we get two complex roots
 $r=2+31, r-31$

Let's analyze the cases starting with cases 122
Suppose the characteristic equation

$$a_{z}r^{2} + a_{1}r + a_{o} = 0$$

of
 $a_{2}y'' + a_{1}y + a_{o}y = 0$
has a real root r.
Then,
 $a_{z}r^{2} + a_{1}r + a_{o} = 0$
Consider the function $f(x) = e^{rx}$.
Then, $f'(x) = re^{rx}$, $f''(x) = r^{2}e^{rx}$.
So, plugging f into the ODE gives
 $a_{z}f'' + a_{1}f' + a_{o}f$
 $= a_{z}r^{2}e^{rx} + a_{1}re^{rx} + a_{o}e^{rx}$
 $= e^{rx}(a_{z}r^{2} + a_{1}r + a_{o})$
 $= e^{rx}(0)$
 $= 0$
Thus, $f(x) = e^{rx}$ is a solution to
 $a_{z}y'' + a_{1}y' + a_{o}y = 0$

Case 1: Suppose
$$\Gamma_{1,1}\Gamma_{2}$$
 are roots of the
characteristic polynomial with $\Gamma_{1} \neq \Gamma_{2}$. Then
 $f_{1}(x) = e^{\Gamma_{1}x}$ and $f_{2}(x) = e^{\Gamma_{2}x}$ both solve
the ODE and the Wronskian is
 $W(e^{\Gamma_{1}x}, e^{\Gamma_{2}x}) = \begin{cases} e^{\Gamma_{1}x} & e^{\Gamma_{2}x} \\ \Gamma_{1}e^{\Gamma_{1}x} & \Gamma_{2}e^{\Gamma_{2}x} \end{cases}$

$$= \Gamma_{2} e^{(\Gamma_{1}+\Gamma_{2})X} - \Gamma_{1} e^{(\Gamma_{1}+\Gamma_{2})X}$$

$$= (\Gamma_{2}-\Gamma_{1})e^{(\Gamma_{1}+\Gamma_{2})X} \neq 0 \quad \text{for any } X$$

$$= (\Gamma_{2}-\Gamma_{1})e^{(\Gamma_{1}+\Gamma_{2})X} \neq 0 \quad \text{for any } X$$

Thus,
$$f_1(x) = e^{f_1 x}$$
 and $f_2(x) = e^{f_2 x}$ are
linearly independent and every solution
to $a_2 y'' + a_1 y' + a_0 y = 0$ will be of
the form

$$y_{h} = c_{1}e^{r_{1}x} + c_{2}e^{r_{2}x}$$

Ex of case 1:
The ODE

$$2y''-5y'-3y=0$$

has characteristic polynomial
 $2m^2-5m-3=(2m+1)(m-3)$
Since we have two distinct roots $-\frac{1}{2}$, 3
every solution to
 $2y''-5y'-3y=0$
is of the form
 $y_h = c_1e^{\frac{1}{2}x} + c_2e^{3x}$

Case 2: Suppose the characteristic polynomial
of
$$a_2y'' + a_1y' + a_0y = 0$$
 has only one real
root r_1 but it's repeated.
We know one solution will be $f_1(x) = e^{r_1x}$.
Let's show that another solution is $f_2(x) = xe^{r_1}$.
Since r_1 is a repeated root we get
 $a_2r^2 + a_1r + a_0 = a_2(r - r_1)^2$ repeated
 $a_2r^2 - 2a_2r_1r + a_2r_1^2$ (algebra)
Thus, $a_1 = -2a_2r_1$ and $a_0 = a_2r_1^2$.
So the ODE becomes
 $a_2y'' - 2a_2r_1y' + a_2r_1^2y = 0$
Let's now plug in $f_2(x) = xe^{r_1x}$.
We have
 $f_2(x) = xe^{r_1x} + r_1xe^{r_1x}$
 $f_2''(x) = e^{r_1x} + r_1xe^{r_1x}$
Plugging f_2 into the ODE gives

$$a_{2}f_{2}'' - 2a_{2}r_{1}f_{2}' + a_{2}r_{1}^{2}f_{2}$$

$$= a_{2}r_{1}e^{r_{1}x} + a_{2}r_{1}e^{r_{1}x} + a_{2}r_{1}^{2} \times e^{r_{1}x}$$

$$- 2a_{2}r_{1}e^{r_{1}x} - 2a_{2}r_{1}^{2} \times e^{r_{1}x}$$

$$+ a_{2}r_{1}^{2} \times e^{r_{1}x}$$

$$= \times e^{r_{1}x} (a_{2}r_{1}^{2} - 2a_{2}r_{1} \cdot r_{1} + a_{2}r_{1}^{2})$$

$$= \times e^{r_{1}x} (a_{2}r_{1}^{2} + a_{1}r_{1} + a_{0})$$

= 0

Thus, $f_2(x) = x e^{r_1 x}$ also solves the ODE. The Wronskian of $f_1(x) = e^{r_1 x}$ and $f_2(x) = x e^{r_1 x}$

$$= e^{2r_{1}x} \neq \sigma^{2r_{1}x} = e^{2r_{1}x} + r_{1}xe^{-r_{1}x}e^{2r_{1}x}$$
$$= e^{2r_{1}x} \neq \sigma \quad \text{for any } x$$

Thus,
$$f_1(x) = e^{r_1 x}$$
 and $f_2(x) = x e^{r_1 x}$ are
two linearly independent solutions to
 $a_2 y'' + a_1 y' + a_0 y = 0$ in this case and
every solution must be of the form
 $y_h = c_1 e^{r_1 x} + c_2 x e^{r_1 x}$

Ex of case 2:
The characteristic equation of

$$y'' - 4y' + 4y = 0$$

is
 $r^2 - 4r + 4 = 0$
Which becomes
 $(r-2)(r-2) = 0$
Thus, we have a repeated real root $r_1 = 2$.
So every solution of
 $y'' - 4y' + 4y = 0$
is of the form
 $y_h = c_1 e^{2x} + c_2 x e^{2x}$

case 3: Suppose the characteristic polynomial
of
$$a_{2y}'' + a_{1y}' + a_{0y} = 0$$
 has two complex roots.
Ne can divide by a_{2} and we get the
same equation $y'' + \frac{a_{1y}'}{a_{2y}'} + \frac{a_{0y}}{a_{2y}} = 0$. For case
of derivation lets assume our equation has
the form $y'' + by' + cy = 0$. And suppose we
have two complex roots: atip and $x - i\beta$.
We claim that $f_{1}(x) = e^{\alpha x} \cos(\beta x)$ and
 $f_{2}(x) = e^{\alpha x} \sin(\beta x)$ will be linearly independent
solutions to the ODE.
Since $d \pm i\beta$ and $d - i\beta$ are roots we know
the characteristic equation factors as follows:
 $t^{2} + br + c = (r - (d \pm i\beta))(r - (d - i\beta))$
 $= r^{2} - 2dr \pm d^{2}t\beta^{2}$
Thus, $b = -2d$ and $c = d^{2} + \beta^{2}$.
Let's show $f_{1}(x) = e^{\alpha x} \cos(\beta x)$ solves the ODE.
We have
 $f_{1}(x) = e^{\alpha x} \cos(\beta x)$

$$f_{1}^{\prime}(x) = \chi e^{\alpha \times} (\cos(\beta \times) - \beta e^{\alpha \times} \sin(\beta \times))$$

$$f_{1}^{\prime\prime}(x) = \chi e^{\alpha \times} (\cos(\beta \times) - \alpha \beta e^{\alpha \times} \sin(\beta \times))$$

$$-\beta \alpha e^{\alpha \times} \sin(\beta \times) - \beta^{2} e^{\alpha \times} \cos(\beta \times)$$

$$= \chi^{2} e^{\alpha \times} \cos(\beta \times) - 2\alpha \beta e^{\alpha \times} \sin(\beta \times)$$

$$-\beta^{2} e^{\alpha \times} \cos(\beta \times)$$

Plugging these into the UDE glues

$$f_{1}'' + bf_{1}' + cf_{1} = f_{1}'' - 2\alpha f_{1}' + (\alpha^{2} + \beta^{2})f_{1},$$

$$= \lambda^{2} e^{\alpha x} \cos(\beta x) - 2\alpha \beta e^{\alpha x} \sin(\beta x) - \beta^{2} e^{\alpha x} \cos(\beta x)$$

$$- 2 \alpha^{2} e^{\alpha x} \cos(\beta x) + 2\alpha \beta e^{\alpha x} \sin(\beta x)$$

$$+ \lambda^{2} e^{\alpha x} \cos(\beta x) + \beta^{2} e^{\alpha x} \cos(\beta x)$$

$$= (\lambda^{2} - \beta^{2} - 2\alpha^{2} + \alpha^{2} + \beta^{2}) \cos(\beta x)$$

$$+ (-2\alpha\beta + 2\alpha\beta) \sin(\beta x)$$

= 0

So, $f_1(x) = e^{dx} \cos(\beta x)$ solves the ODE. Similarly you can check that $f_2(x) = e^{dx} \sin(\beta x)$ solves the ODE. Let's make sure these

Solutions are linearly independent.
We have

$$W(e^{\alpha x} \cos(\beta x), e^{\alpha x} \sin(\beta x))$$

$$= \begin{vmatrix} e^{\alpha x} \cos(\beta x), e^{\alpha x} \sin(\beta x) \\ de^{\alpha x} \cos(\beta x) + e^{\alpha x} \sin(\beta x) \\ de^{\alpha x} \cos(\beta x) + e^{\alpha x} \sin(\beta x) \\ de^{\alpha x} \sin(\beta x) \sin(\beta x) + \beta e^{2\alpha x} \cos^{2}(\beta x) \\ - de^{\alpha x} \sin(\beta x) \cos(\beta x) + \beta e^{2\alpha x} \sin^{2}(\beta x) \\ - de^{\alpha x} \sin(\beta x) \cos(\beta x) + \beta e^{2\alpha x} \sin^{2}(\beta x) \\ = \beta e^{2\alpha x} (\cos^{2}(\beta x) + \sin^{2}(\beta x)) \\ = \beta e^{2\alpha x} (\cos^{2}(\beta x) + \sin^{2}(\beta x)) \\ = \beta e^{2\alpha x} = 0 \text{ for any } x \sin(\alpha \beta \neq 0).$$
Conclusion: Every solution to the UDE is of the firm

$$y_{h} = c_{1} e^{\alpha x} \cos(\beta x) + c_{2} e^{\alpha x} \sin(\beta x)$$

Ex: The UDE

$$y'' - 4y + 13y = 0$$

has charctenistic equation
 $r^2 - 14r + 13 = 0$
Which has two complex roots
 $r = 2 + 3\overline{\lambda}, 2 - 3\overline{\lambda}$
 $\alpha + \overline{\lambda}\beta$ $\alpha - \overline{\lambda}\beta$
 $\alpha = 2, \beta = 3$
Thus every solution to $y'' - 4y + 13y = 0$
is of the form
 $y_h = c_1 e^{2x} \cos(3x) + c_2 e^{-5} \sin(3x)$
Where c_1, c_2 are constants

Summary: Consider the second order
linear, homogeneous ODE

$$a_2y'' + a_1y' + a_0y = 0$$
 (*)
where a_{0}, a_1, a_2 are real number constants
and $a_2 \neq 0$.
Case 1: If the characteristic equation of (*) has
two distinct real roots r_1, r_2 , then every
solution of (*) is of the form
 $y_n = c_1 e^{r_1 \times} + c_2 e^{r_2 \times}$
 $case 2:$ If the characteristic equation of (*)
has one real repeated root r , then every
solution to (*) is of the form
 $y_n = c_1 e^{r} \times c_2 \times e^{r}$
 $cuse 3:$ If the characteristic equation of (*)
has two complex roots $x + ip$ and $x - ip$
has two complex roots $x + ip$ and $x - ip$
 $y_n = c_1 e^{r} \cos(px) + c_2 e^{x} \sin(px)$